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1 Introduction and statement of main results

Among Riemannian manifolds the symmetric spaces of rank 1 form an important class. On
these spaces we can study many problems of geometry, theory of functions and mathematical
physics (see [H1], [H2], [H3]). Examples of symmetric spaces of rank 1 are n-dimensional
sphere S™ and n-dimensional Lobachevsky space (hyperbolic space) H". On symmetric
spaces there are analogs of the Fourier series (for compact spaces) and of the Fourier transform
(for noncompact spaces), and many problems of classical harmonic analysis have a natural
analogue for symmetric spaces. In what follows we will consider only symmetric spaces of
noncompact type. Our main result is an analogue of one classical result of E. Titchmarsh
connected with the Fourier transform of L2-functions satisfying certain Lipschitz conditions.
Let f(z) € L*(R), || - | z2(r) be the norm on L%(R), & € (0,1).
Definition 1. A function f(z) belongs to the Lipschitz class Lip(a,2) if

If(z +1t) = f(2)llL2m) = O(t%)
ast— 0.

Theorem 1 ([T, Theorem 85]). Let f(z) € L?*(R) and f()\), A € R, be the Fourier
transform of f. Then the conditions

f € Lip(e,2), 0<a<l,

and
[ 1Fpax = oe)
[Al>r
as r — 00, are equivalent.

Recall some standard definitions connected with symmetric spaces ([H1]). Any Rieman-
nian symmetric space X can be realized as the quotient space G /K, where G is a semisimple
connected Lie group with finite center and K is a maximal compact subgroup of G. The
group G acts transitively on X = G/K by left translations, and K coincides with the stabi-
lizer of the point 0 = eK ( e is the unity of G). Let G = NAK be the Iwasawa decomposition
of G, and let g, p, a, n be the Lie algebras of the groups G, K, A, N , respectively. We denote
by M be the centralizer of the subgroup A in K and put B = K /M. Let dz be a G-invariant
measure on X; the symbols db and dk will denote the normalized K-invariant measures on
B and K, respectively.
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We denote by a* the real dual space to a, and by W the finite Weyl group acting on a*.
Let ¥ be the set of restricted roots (X C a* ), &7 be the set of restricted positive roots, and

at ={hea:y(h)>0, yext}

be the positive Weyl chamber. Let p denote the half-sum of the positive roots (with multi-
plicity), then p € a*. Let (-,-) be the Killing form on the Lie algebra g. This form is positive
definite on a. For )\ € a*, let Hy denote a vector in a such that A\(H) = (Hj, H) forall H € a.
For \,p € a* we put (\, u) := (Hy, Hy,). The correspondence X — H) enables us to identify
a* and a. Via this identification, the action of the Weyl group W can be transferred to a.
Let

aj_z{)\Ea*:H,\EaJ“}.

If X is a symmetric space of rank 1, then dima* = 1, and the set ¥t consists of the roots
~ and 2y with some multiplicities m, and g, depending on X (see [H2]). In this case we
identify the set a* with R via the correspondence A — Ay, A € R, and the positive numbers
will correspond to the set a%. The numbers m.,, and mg, often arise in various formulas
related to symmetric spaces of rank 1. For instance, the area of the sphere of radius ¢ in X
is equal to

S(t) = c(sinh t)™ (sinh 2¢)"?, (1.1)

where ¢ is a constant, and for the dimension of X we have
dim X = my +mao, + 1. (1.2)

We return to an arbitrary symmetric space X.
For g € G, let A(g) € a be a unique element for which

g=n-expA(g) - u,
where u € K,ne€ N. Forz =gK € X =G/K and b= kM € B = K/M we put
Az, b) := A(k™Lg).

Let D(X) and D(G) denote the sets of infinitely differentiable complex-valued functions with
compact support in X and in G, respectively. We note that the functions on X = G/K can
be identified in a natural way with the functions f(g) on G satisfying

f(gu) = f(g9), uv€K.

Let dg be the Haar measure on G. We assume that dg is normalized in such a way that
[ 1@ dz= [ 1igo)ds, ¥1eDX), (13)
X G

where 0 = eK € X = G/K.
For any functions f(z) € D(X), its Fourier transform, introduced by S. Helgason [H4], is
defined by the formula

FOub) = / f(z) eCMAAEN) gr N e a*, be B = K/M. (1.4)
X
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The measure dz on X can be normalized in such a way that the inversion formula for the
above Fourier transformation on X will look like this:

f(sc)=|—v1VI / F(A b) el+AEN |c(x)| 2 dA db, (1.5)

a*xB

where |W| is the order of the Weyl group, d) is the element of the Euclidean measure on a,
and c()\) is the Harish-Chandra function. In what follows, for brevity we put

du(X) == |e(A)| 72 dA.
We have the following Plancherel formula:

)[If(w)l2dw=|—é,| / FuOIF duab = ZB FOBRduNdb.  (16)

a*xXB

By continuity the map f(z) — f()\, b) extends from D(X) to an isomorphism of the Hilbert
space L2(X) = L?(X, dz) onto the Hilbert space L*(a* x B, du()) db). This extended map,
also denoted f(z) — f()\, b), keeps the name of the Fourier transformation, and the relations
(1.5) and (1.6) remain valid.

In what follows, X is a Riemannian symmetric space of noncompact type of rank 1,
n = dim X. By d(z,y) we denote distance from z to y, where z,y € X. Let

o(z;t) = {y € X : d(z,y) = 1}

be the sphere in X centered at z of radius ¢ > 0. We denote by do(y) the (n—1)-dimensional
element of area and by |o(t)| the area of entire sphere o(z;t) (the latter quantity is indepen-
dent of z).

Let C¢(X) be the set of all continuous complex-valued functions on X with compact
support. For f € C.(X) we define a function Sf by the formula

(5'f)() = I—l—

i [ 1wdet, >0 (1.7

o(z;t)

The operator S* is called the shift operator or the spherical averaging operator. It can be
proved (see the next section) that the operator St extends by continuity from C.(X) to
L% (X).

Definition 2. A function f(z) belongs to the Lipschitz class Lipx(a,2), 0 < a < 1, if
f € L*(X) and
1S f = fllLzx) = O(t*)

ast— 0.

The next theorem is an analogue of Theorem 1 for symmetric spaces.

Theorem 2. Let X be a Riemannian symmetric space of noncompact type of rank 1, n =
dim X. For any function f(z) € L?(X) the conditions

f € Lipx(,2), 0<a<l, (1.8)
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and

/ / |\ B)[2drdb = O(r~2e—mFY) (1.9)
|A|I>r B
as v — 400, are equivalent.

The proof of this theorem is the main purpose of the paper. The other analogue of Theo-
rem 1 on the Lobachevsky plane H? was considered by Younis [Yo]. This author considered
the other shift operator which depends on model of the Lobachevsky plane, whilst the shift
S* has geometrical origin.

2 Auxiliary propositions

Here we collect the auxiliary results of the Harmonic analysis on symmetric spaces.
For any h € G and f(z) € C.(X) we put

(T ) (z) = / Flgkho) dk, 2.1)
K

where £ = go, g € G. If z has another representation z = gj0, g1 € G, then g; = gd for some
0 € K. Using the K-invariance of the Haar measure on K, we obtain

/f(glkho) dkz/f(gdkho) dkz/f(gkho) dk.
K K K

Consequently, the formula (2.1) is well-defined.
The operator T" is the other form of the shift operator S*. It follows from the next
lemma.

Lemmal. If h € G and d(ho,0) =t, then
(T*f)(2) = (8*f)(z), z€X. (2.2)
Proof. For any function f(z) on X and u € G we put
(Luf)(2) := f(uz).
The operators L, and T" are commute, that is
Ly(Thf) = TM(Lyf), fe€Cu(X), u,h€QG. (2.3)
Since any element in G is an isometry of X, we have
Ly(Stf) = SH(Luf), t>0, ueQG. (2.4)
Let z = go, g € G. It follows from (2.3) and (2.4) that

(T"f)(@) = (T"£)(g0) = (Lg(T"))(0) = (T"(Lyf))(0),
(S"f)(z) = (5°F)(g0) = (Lg(S*S))(0) = (S*(LgS))(0)-
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Therefore, the identity
(T"f)(@) = ($'f)(z) VfeC(X), VzeX,
will be proved if we show that
(T"f)(0) = (§'f)(0) Vf € Ce(X). (2.5)
Let C(o(0;t)) be the set of all continuous functions on the sphere o(0;t). For () € C(o(0;t))

we put
Li(p) := (T"p)(0), L) := (5%¢)(0),

assuming that ¢(z) is extended in some way from o(0;t) to a function of class C.(X); the
values of I;(¢) and I2(p) do not depend on specific way of extension. Obviously, I; and I
are positive linear functionals invariant with respect to the action of K, that is,

L(Lip) = Li(p), I2(Lip) = Ix(p) Vk € K.

The functionals I; and I give rise to K-invariant measures on the sphere o(0;t). Since any
symmetric space of rank 1 is a two-point homogeneous manifold (see [W]), it follows that K
acts transitively on o(o;t). Hence, a K-invariant measure on o(o;t) is uniquely determined
up to a coefficient. If we take @o(z) =1, then

Ii (o) = I2(po) = 1;

therefore, I, and Iy coincide. This implies (2.5) and (2.2).
Let LP(X) = LP(X, dz), 1 < p < 00, and || - ||, be the norm in the Banach space LP(X).

Lemma 2. For any function f € C.(X) and any g € G we have

IT"£llp < 11 £lp- (2.6)

Proof. Let p > 1. If (k) is a continuous function on the group K then using |, xdk=1
and the Holder inequality, we obtain

| /K o(k) dk[” < /K (k) P d. 2.7)

The inequality (2.7) is obvious for the case p = 1.
Let f(z) € C.(X). Using (1.3) and (2.7) we obtain

1T = /X (T (a) P dz = /G (T £ (go)P dg =

- /1 / £ (ghho) dil? dg < / | \f(akhoyp didg =
= [ ([ 1#tgkho dg) k= [ ([ 1#tgo)p doyar = 11

Here we have used the invariance of the Haar measure dg on G with respect to the right
shifts.
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Since C,(X) is dense in LP(X) for 1 < p < oo, Lemma 2 shows that the operator T" (and
the operator S*) can be extended to a continuous operator on the entire space LP(X), and
(2.3) remains true for any f € LP(X). In particular

1St fllz < Ifll2s  f € LA(X). (2.8)

In harmonic analysis on symmetric spaces the central role plays spherical functions (see
[H2], [GW], [ST]). For A € a*, let ©5(g) denote the spherical function on G defined by the
Harish-Chandra formula

i) = / AR g g€ G, (2.9)
K

where all notations is defined in §1. We list some properties of the spherical functions to be
used later on:

pa(urguz) = palg), wu1,u2 € K; (2.10)
ox(g™) = pal9), 9€G; (2.11)
pale) = 1. (2.12)

Lemma 3. Let ®(f)(\,b) := F(\,b) be the Fourier transform of f(z) € L?(X). Then

~

o(T"f)(A,0) = pa(h) - f(A,D), heG. (2.13)

Proof. Since D(X) is dense in L2(X), it is sufficient to prove (2.13) for f € D(X). We
recall that the element A(g) € a is defined from the Iwasawa decomposition

g=n-expA(g) - u, (2.14)
where u € K,n€ N. Let g,h € G, k € K. Since
kgh = n - exp(A(kg)) - u(kg) - h

for n € N, u(kg) € K, and since the subgroup A involved in an Iwasawa decomposition
normalizes the subgroup IV, we obtain

A(kgh) = A(kg) + A(u(kg)h). (2.15)

For brevity we put .

From definition of the Fourier transformation we deduce that

0,0 = | ( [ #tgoho) dv) ex(k~1g) dg, (2.16)
G

K
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where b = kM, k € K. Since uo = o and A(gu) = A(g) for u € K, the right-hand side in
(2.16) can be reshaped as follows:

CI/”’Tf()\,b =//f (gvhv o) ex(k"1g) dg dv =

\

/fgo ex(k"tgvh v ) dgdv =

K G
/f </e>‘ (k~1gvh~ )dv) dg. (2.17)
G K

Then, by (2.15) we have

ex(k"'guh™") = ex(k'g) - e(uvh™Y),

where u = u(k~!g). Substituting this in (2.17), we obtain

Th7(0,0) = [ £(90)er(k™'9) ([ ex(uon™) dv) dy =
G

K

~ ~

== (p)\(h_l) (Avb) = ‘P)\(h) & (Aab)

This completes the proof.

Let h; and hy be elements of the group G such that d(hi0,0) = d(hgo,0) = t. Since X
is a two-point homogeneous space (see [W]), it follows that K acts transitively on o(o;t).
Hence, hyo = uhjo for some u € K. Since K is the stabilizer of the point o, it follows
from hoo = uhio that hy = uhyv for some v € K. By (2.10) we have py(h1) = @a(h2),
consequently, the function ¢y (h) depends only on the distance ¢ = d(ho, 0), and we will write
often ) (t) instead of @) (h) for t = d(ho, o).

Using Lemma 1 we can rewrite (2.13) in the form

B(SF)(N,b) = oalt) - F(A,D), t€ Ry =[0;+00). (2.18)

We recall that the set a* is identified with R ( see §1). Since @y (t) = ¢-a(t), we will propose
AER,.

Lemma 4 (Estimates for spherical functions) For any spherical function p\(t),
A>=0,t>0, we have:

1) lea®)] < 1;
2) 1-@a(t) <A +p%);
3) there is a constant ¢ > 0 depending only on X such that if A\t > 1, then

1—pa(t) 2 ¢ (2.19)

Proof. See [P], Lemmas 3.1, 3.2 and 3.3].
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3 Proof of Theorem 2

Proof of implication (1.8) = (1.9)
Let f(z) € L?(X) and the condition (1.8) is true, that is

I5f = fllz = O(%) (3.1)

as t = 0. From the Plancherel formula and (2.18) it follows that

I18%F — I3 = /lStf(a:) — f(z)*dz =
X

oo

=//u—mmmﬂmme@- (3.2)

0 B

For brevity we denote

F(\) := / |7\, b)2 db. (3.3)
B

It follows from (3.2) and (3.3) that we can rewrite (3.1) in the form

[ 1= er®F FOyau) = 0, (3.4)
0

We recall that
du(X) = [e(N)| 7% dA,

where ¢()\) is the Harish-Chandra function of the symmetric space X. For any functions
A(X) > 0 and B(A) > 0 we say that

A(N) < B(A)
as A = oo if
a B(A) < A(A) < 2 B(})

for some constants ¢; > 0 and ¢z > 0. Below, c,c;,c2,... are positive constants that may
depend on X and « and independent on f and .

The Harish—Chandra function c¢(\) can be expressed in terms of the I'-function of Euler
(see [H2, Chapter 4, §6]). When X is a symmetric space of rank 1, we have

T(3my + 5+ 3A) T(Gmy + fmay + 1))
LA+ 3) TN ’

where cg > 0 is a constant, m, and mg, are the multiplicities of the roots v and 2y in &+

(see §1).

Using well known limiting relation

(M) =co

(3.5)

lim I'A+a)

A TN
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(see [BE]) we get from (3.5) that
|2 = N tmay,

Since my 4+ mgy + 1 =n = dim X, it follows that

(N2 < A", n=dimX.

If A € [1,2] then At > 1, and we get from (2.19) that

1
L< S -ea@)f.

Then

2/t 2/t

/ﬂﬂ@@<é/ﬁ—w@ﬁﬂﬂ@®<

1/t 1/t

<3 [ - 0@F FOdu() = 0.
0

It follows from (3.8) and (3.6) that
2/t
/ FO\) X" Ldx = O(t%)
1/t

as t — 0 or, equivalently,
2r

JFoyxtar= o

as r — +o0o. We can rewrite (3.10) in the equivalent form
2r
[ FOyar= 0@y
A

as r — 4o00.
It follows from (3.11) that

2r
/ F(\)dX\ < ¢ r-2e-ntl

T
where ¢; > 0 is a constant. Using this inequality, we get

k41
2 T -

r =0
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and the condition (1.9) is true. We obtain that (1.8) implies (1.9).

Proof of implication (1.9) = (1.8)
Let f(z) € L?(X) and the condition (1.9) is true, that is

/ F()\) d\ = O(r—20-n+1) (3.13)

as r — oo. It follows from (3.13) that

2r
/ F(\)d\ = O(r—20—n+1)

T

hence,
2r 2r
/F()\) An=lgy g 2nmlpnl /F(,\) d\ < c3r™2@,
T T
Now
o] 5 2k+1p -
/ FO)Zlaa =3 / FO)XLd) < g Y 272020 ¢ 2
Hence
o0
/ FO) X" Ldx = O(r~2%)
r
and, by (3.6),
o0
/ F(\)du()) = O(r~2). (3.14)
d
We can rewrite (3.2) in the form
IS4 f = flI3 = I + I, (3.15)
where
1/t
b= [ 1= @PFO) duO, (3.16)
0
oo
B = [ 1= erOPFO) du. (3.17)
1/t

Let us obtain the upper bounds of I; and I5. Using (3.14) and |px(t)| < 1, we get

L= / 11— ()PP (V) du() < 4 / F()) du()) = O(%%). (3.18)
1/t 1/t
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Using the inequalities 1) and 2) of Lemma 4, we obtain

1/t 1/t
Iﬁj/ﬂ—wﬁWFOMMM<2/H—wﬂmFONMM<
0 0
1/t

£ 2" / A2+ 2 ) F(\) dp()\) = I3 + I,
0

where

1/t
B =2 [ FO)du),
0
t

1/
I = 2t? / A2 F(N) dp(N)-
0

Using the Plancherel formula, we get

o0

k<%W/NM@W=MWWﬁ=mW%
0

since 2a < 2.
Temporarily we denote

¢vw=/Fuwmm

Using integration by parts, we get

1/t 1/t
=222 [(=r2/(r)) dr = 262 (-—1—¢ (1) +2 [ ryr) dr) e
[ )]
: 1/t
= -2 (—) + 482 [ rop(r) dr.
)]
Since ¥(r) = O(r—2%) (see (3.14)), we have r(r) = O(r'~*) and
1/t 1/t
/rw(r) dr = O(/ rl=2a dr) = O(t2*2).
0 0
Hence,
I = O(t*®).

Finally, by (3.15), (3.18), (3.19), (3.20) and (3.21), we obtain
IS*F = £II3 = O(*)
ast — 0, i.e. (1.9) implies (1.8). This completes the proof of Theorem 2.
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